7 research outputs found

    Efficient FPGA Hardware Reuse in a Multiplierless Decimation Chain

    Get PDF
    In digital communications, an usual reception chain requires many stages of digital signal processing for filtering and sample rate reduction. For satellite on board applications, this need is hardly constrained by the very limited hardware resources available in space qualified FPGAs. This short paper focuses on the implementation of a dual chain of 14 stages of cascaded half band filters plus 2 : 1 decimators for complex signals (in-phase and quadrature) with minimal hardware resources, using a small portion of an UT6325 Aeroflex FPGA, as a part of a receiver designed for a low data rate command and telemetry channel

    Mechanics, thermodynamics, and kinetics of ligand binding to biopolymers.

    Get PDF
    Ligands binding to polymers regulate polymer functions by changing their physical and chemical properties. This ligand regulation plays a key role in many biological processes. We propose here a model to explain the mechanical, thermodynamic, and kinetic properties of the process of binding of small ligands to long biopolymers. These properties can now be measured at the single molecule level using force spectroscopy techniques. Our model performs an effective decomposition of the ligand-polymer system on its covered and uncovered regions, showing that the elastic properties of the ligand-polymer depend explicitly on the ligand coverage of the polymer (i.e., the fraction of the polymer covered by the ligand). The equilibrium coverage that minimizes the free energy of the ligand-polymer system is computed as a function of the applied force. We show how ligands tune the mechanical properties of a polymer, in particular its length and stiffness, in a force dependent manner. In addition, it is shown how ligand binding can be regulated applying mechanical tension on the polymer. Moreover, the binding kinetics study shows that, in the case where the ligand binds and organizes the polymer in different modes, the binding process can present transient shortening or lengthening of the polymer, caused by changes in the relative coverage by the different ligand modes. Our model will be useful to understand ligand-binding regulation of biological processes, such as the metabolism of nucleic acid. In particular, this model allows estimating the coverage fraction and the ligand mode characteristics from the force extension curves of a ligand-polymer system

    A multicentre comparison of quantitative (90)Y PET/CT for dosimetric purposes after radioembolization with resin microspheres : The QUEST Phantom Study

    No full text

    Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care

    No full text

    Consensus Summary Statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care

    No full text
    corecore